
DATASHEET

API Testing Methodology — Where Synack API 
Penetration Testing Fits In

What Synack provides: Security Testing and Penetration Testing

This document reviews different types of API testing, clarifies what Synack provides in API pentesting 

and details researcher methodologies. Please note that although all of the testing types described in 

this document have a valuable place in your API development, not all are addressed by Synack. 

Synack solves one aspect of API security by offering API 

pentesting, performed by researchers of the Synack Red 

Team (SRT).

Synack API pentesting provides a true adversarial 

perspective, as researchers attempt to exploit the API in the 

way a real external adversary would. Their human intelligence 

and creativity go beyond that of automated testing solutions, 

using the documentation to enable the most effective test 

possible. SRT researchers will attempt to exploit common 

and critical vulnerabilities, including (but not limited to) a 

subset of the OWASP API Top 10.

Understanding the OWASP API Top 10 vulnerabilities can 

paint a clear picture of Synack researcher methodology. Here, 

we enumerate the Top 10, articulating the definition of the 

flaw and clarifying how it fits into a Synack test. Note that 

only 7 of the 10 are applicable to Synack API Pentesting.

Researchers are not limited to the OWASP Top 10; it is 

simply an effective list for providing general guidance and 

understanding of testing methodology.

Broken Object Level 

Authorization

Attackers manipulate object identifiers within a request to gain unauthorized access to 
sensitive data. 

This should sound familiar to security practitioners; it’s referred to as an Insecure Direct Object 
Reference (IDOR) in a web system. 

Broken object level authorization (BOLA) is the most common API threat, represented in about 
40% of all API attacks.This is due to the common practice of using object identifiers to retrieve 
and manipulate data via API endpoints. For example, in the URL example.com/profile/1, the 1 is 
an identifier, which represents the id of the profile to return.

Broken User 

Authentication

Incorrectly implemented API authentication may allow attackers to impersonate API users and 
access confidential data. 

Broken user authentication enables attackers to use stolen authentication tokens, credential 
stuffing and brute-force attacks to gain unauthorized access to applications. This can manifest 
in direct browsing and many access control issues.

Failure to effectively authenticate users presents a large threat to the API providers and also 
the users whose data resides within the API. 

OWASP Top 10 API flaws



Excessive Data 

Exposure

Many APIs err on the side of exposing data and count on the API user to filter the data 

properly. When APIs provide more data than is needed, an attacker can exploit an app by 

using redundant data to further extract sensitive data such as personal email addresses and 

other personally identifiable information

The API may expect the API client to filter out such data so that it’s not presented to the end 

user, but this does not prevent it from being read during transport, exploited by a malicious 

API client, or even inadvertently revealed by a benign API client.

Broken Function Level 

Authorization

Improperly implemented user authorization allows unauthorized users to execute administrative 

API functions such as adding, updating or deleting a customer record or a user role.

Broken Function Level Authorization (BFLA) is similar to BOLA, but is focused on general functions 

rather than individual objects. 

Mass Assignment

The API automatically applies user inputs to multiple properties. An attacker could use this 

vulnerability to, for example, change themselves to an admin while updating some other 

innocuous property of their user profile.

APIs that directly consume input requests and assign/write them to the business logic data 

stores are vulnerable to mass assignment. In the case of an object database, for example, if 

the payload maps directly to the stored data and is inserted directly, without input validation 

compared against authorization levels, then the attacker can alter data in unintended ways.

M&A Risk Analysis
Discover and analyze vulnerabilities of a potential acquiree before it becomes a threat to 

the acquirer 

Security 

Misconfiguration

This covers a variety of API configuration mistakes, including misconfigured HTTP headers, 

unnecessary HTTP methods and what OWASP calls “verbose error messages containing 

sensitive information.” Security misconfiguration is a catch-all for a wide range of security 

misconfigurations that often negatively impact API security as a whole and introduce 

vulnerabilities inadvertently.

Significantly, a service’s default configuration can be a Security Misconfiguration. Any 

information on or insight into a service may give an attacker valuable information that can 

be used for exploitation. For example, HTTP servers may present version numbers in default 

response headers or bodies. Such information can influence an attacker’s plan. Non-verbose 

responses like custom 200 responses should be considered to accommodate a true defense 

in depth posture.

Injection

The attacker sends specialized commands to the API that trick it into revealing data or 

executing some other unexpected action. This attack is the one hold-over from the original 

OWASP Top 10 list – the others are new and focused just on APIs. Attackers exploit injection 

vulnerabilities by sending malicious data to an API that is in turn processed by an interpreter or 

parsed by the application server and passed to some integrated service.

The injection vulnerability is caused by not validating user input, where that input is later 

used verbatim without any protection mechanisms. For example,the input, if used as an 

update to a field in a relational database, may contain text that terminates the SQL query and 

performs additional queries. If the input is not sanitized to remove potential SQL query string 

modifications, then it will be executed as a successful statement.



Improper Assets 

Management 

NOT TESTED

Attackers are able to find production APIs and deprecated APIs. An outdated or incomplete 

inventory results in unknown gaps in the API attack surface and makes it difficult to identify 

older versions of APIs that should be decommissioned.

This can be caused by the API not being properly documented, API developers turning over in 

an organization or other negligence. 

Since Synack works from documentation provided by the client, testing for extra assets is 

considered out of scope. 

Lack of Resources & 

Rate Limiting 

NOT TESTED

APIs that improperly implement rate limiting or neglect to implement it at all are highly 

susceptible to brute-force attacks or DoS.

APIs that don’t have restrictions in place can be overwhelmed by legitimate requests, as well 

as requests from malicious actors. In such situations, an API can no longer operate and will no 

longer be able to service requests and can be unable to complete those currently in progress.

Testing for this vulnerability results in a significant possibility of Denial of Service (DoS) or 

significant degradation of customer assets. Due to this risk, Synack does not test this flaw. 

Insufficient Logging 

& Monitoring 

NOT TESTED

Insufficient logging and monitoring, combined with missing or ineffective integration with incident 

response, allows attackers to perform reconnaissance, exploit or abuse APIs, compromise 

systems, maintain persistence, advance attacks, and move laterally across environments without 

being detected. 

OWASP notes that studies show it typically takes over 200 days to detect a breach. Detailed 

event logging and close monitoring may enable API developers to detect and stop breaches 

far earlier.

Insufficient Logging & Monitoring is not a direct vulnerability or threat, but rather the organization 

is blind to current active attacks, previous attacks and the information needed in the forensics 

process to determine the impact of the attack. Without this insight, the organization is vulnerable 

to future attacks through the same methods or backdoors planted in previous attacks, which 

might be even more difficult to detect.

This logging and monitoring capability is internal and should be planned from the initial design 

stages of projects. This can be tested to see if the system has logs during a Synack test. For 

example, does your team see our testing and have logs to show when and where we were at? 

That said, from our SRT Researcher perspective, they are normally unable to see the logs and 

determine if they are capturing the traffic. Additionally, the term “insufficient” is impossible to 

determine without further business analysis. For example, in some systems a week of logs is 

sufficient and possibly preferable due to legal liabilities. For others, a year or two of logs may be 

preferable. There are legal, business, cost and framework requirements that go into this decision. 

This is a business-driven decision that the customer team should evaluate and decide the risk 

analysis, cost and benefits of a solution and the rules around it. To test the system though, 

clients can simply check their logs to see if they caught the testing traffic. Synack does not 

directly address this control due to our external black-box testing methodologies.



© 2022 Synack Inc. All rights reserved. 2022-1138

Other types of API testing (what Synack does not provide)

Validation testing

Validation Testing addresses questions such as: Was the 

correct product built? Is the designed API the correct 

product for the issue it attempts to resolve? Was there any 

major code bloat—production of code that is unnecessarily 

long, slow and wasteful—throughout development that 

would push the API in an unsustainable direction?

The second set of questions focuses on the API’s behavior: 

Is the correct data being accessed in the predefined 

manner? Is too much data being accessed? Is the API 

storing the data correctly given the data set’s specific 

integrity and confidentiality requirements?

The third set of questions looks at the efficiency of the 

API: Is this API the most efficient and accurate method 

of performing a task? Can any codebase be altered or 

entirely removed to reduce impairments and improve 

overall service?

These decisions are based on the design and business 

needs of the customer. 

QA testing 

These tests ensure the API performs exactly as it is 

supposed to. This test analyzes specific functions within 

the codebase to guarantee that the API functions within 

its expected parameters and can handle errors when the 

results are outside the designated parameters.

This is essentially a “smoke test” for the engineering team. 

This ensures that the APIs are doing what they planned. 

This is something that should have been done before 

testing with Synack.

Load testing 

This is used to see how many calls an API can handle. This 

test is often performed after a specific unit, or the entire 

codebase, has been completed to determine whether the 

theoretical solution can also work as a practical solution 

when acting under a given load. This load can be either 

the operational average load to check performance or 

an expected maximum peak load as determined by the 

product development team.

This is a test that should be completed by the design and 

engineering team of the customer to ensure we are able to 

test at scale. Although we can create significant traffic, Synack 

does not provide this type of testing. A failed test from this will 

degrade the performance of the system, possibly causing a 

crash or shutdown. This would effectively test denial of service, 

which is not a product we offer due to the inherent risks. 

Reliability testing 

Reliability tests ensure the API can produce consistent 

results and the connection between platforms is constant. 

Obviously, if Synack is testing an API and results are not 

stable or consistent, there is little we can determine. This is 

also something that is normally done during development and 

not during security testing. If this testing is not done and the 

system produces inconsistent results from identical input, 

Synack’s security testing will be less effective.

Fuzz testing

Fuzz testing forcibly inputs huge amounts of random data,also 

called noise or fuzz,into the system, attempting to create 

negative behavior, such as a forced crash or overflow. If 

you read the words “forced crash,” “negative behavior” and 

“overflow” and got a little worried, good. Those are destructive 

and disruptive behaviors in a system. These are effectively 

creating a denial of service crash state on the tested system. 

This is testing that Synack does not work on due to the risk of 

adverse effects on the customer assets. 


